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DYNAMIC DAMAGE AND FRACTURE OF A PLATE WITH THE EXPANSION OF A 

GAS CAVITY IN WATER 

S. P. Kiselev and A. P. Trunev UDC 539.3 

A large number of studies (see [I], for example) have examined the fracture of a plate 
by pressure created in water by a gas bubble. The studies conducted thus far have general- 
ly dealt with explosive loads. In the present investigation, we examine low pressures in 
the bubble (Ap ~ l0 s Pa) which are created when gas is discharged from a high-pressure 
chamber. There are actually no small parameters in the problem in this cae, and study of 
the plate's fracture requires allowance for the effect of the plate on the expanding bub- 
ble, the character of discharge from the chamber, the stress-strain state of the plate, 
and damage accumulation in the plate. 

i. Formulation of the Problem. We will examine a plate of thickness h lying on the 
surface of a liquid of semiinfinite depth (Fig. I). A gas cavity located at the depth H 
begins to expand at a certain moment of time. The excess pressure Ap causes the plate 
to deform and crack, resulting in the formation of a hole of radius r*. This very complex 
problem will be analyzed in two stages. First we study a linear model of the deformation 
of an infinite plate. The solution of this problem gives us the pressure distribution on 
the surface of the plate p(r, t). In the second stage, we use p(r, t) to calculate the 
fracture of a plate of finite dimensions with allowance for nonlinear strains. 

Let us state the main assumptions underlying the given model: i) the material re- 
mains elastic until fracture; 2) the characteristic length of the wave in the plate is much 
greater than its thickness; 3) the liquid is incompressible and ideal and the flow is a 
potential flow; 4) the gas cavity is spherical. 

Given these assumptions, the equations of the liquid, with boundary conditions for 
the plate and the bubble, have the form 

a~ a~ a~ I a~ a~ a~ 
A~:0 at z<0, -bFi-ffrTf+-~a=a=-az at z:~, 

0 ~  v 2 02~ 0 0 ~  �9 
p ~ q_ p_~- + pg~ q_ DA~$ + Pwh ~ = at z=~ ,  Tr  = UoCOSO+a (i.i) 

at i B = a ,  
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Fig. 1 

where ~ is the flow potential; v = 7~ is the velocity of the liquid; ~ is the deviation 
of the plate from its equilibrium position; r, z, and a are the radial and axial coordinates 
and the polar angle in the coordinate system connected with the plate; p is the density 
of the liquid; Pw, h are the density and thickness of the plate; D is the cylindrical stiff- 
ness of the plate; g is acceleration due to gravity; R and 0 are the radial coordinate and 
the azimuthal angle in the spherical coordinate system; a is the radius of the bubble; a 
is the rate of its expansion (growth); u 0 is the rate of displacement of the center of the 
bubble; A i is an operator: A I = (8/$r2)+ (i/r)(%/Sr) + (i/r2)(82/8~2). The following 

conditions for a quiescent medium are valid at large distances from the bubble: 

~ 0 ,  O~Ot~O at r ~ ,  ~ 0  at B ~ ,  z=O.  ( 1 . 2 )  

The initial conditions for the problem: 

9 = ~ ----- Or = 0 a t  t ---- 0> ( 1 . 3 )  

Up to the moment of fracture, the damage to the material will be described on the basis 
of an impulse criterion having the form [2] 

d t -  I0' ~< ~,. (1.4) 

Here, w s is the damage to the medium; o* and v 0 are fracture parameters; o m = (i/3) • o I + 
0 2 ) is a normal tensile stress. In the case of axial symmetry, we have the following on 
the top surface of the plate when it buckles 

'_ (1.5) 

(E is the Young's modulus and v is the Poisson's ratio). Here, the fracture region is a 
cylinder whose radius is determined from the equation 

W s ( r * ,  t ) = 1. 

Let us now formulate the law governing the expansion of gases in the bubble. 
the pressure to be uniform over the volume of the cavity, we obtain 

? ~ with adiabatic expansion, . 

7bu= i--with isothermal expansion, 

( 1 . 6 )  

Assuming 

(1.7) 

where Pbu is the pressure in the bubble; Vbu is the volume of the bubble; m is the mass 
of the gas; 7 is the adiabatic exponent; ~ is determined from the system of equations that 
models the discharge of gas from a high-pressure chamber having a finite volume Vch: 

,,, = =-VPcy/Oc h, (v   aS dt = ( v  -  )Cloch, 
% d o A a t =  - G ,  

G = FB,l~ch/"[/R-~h at  Pch/Pb > ((? q- l)/2)v/(v -1), 

- 2 ~ 7+i 

"l=-]/Y(~'~---t)' B Z = Y ~ + ?  t' ~ 2 ( ? - - t ) "  
( 1 . 8 )  
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Here, Pch, Tch, and Pch are the pressure, temperature, and density of the gas in the high- 
pressure chamber; G is the rate of flow of gas from the chamber into the bubble; F is the 
cross-sectional area; R is the universal gas constant. 

2. Solution at the First StaKe. Bubble Dynamics. We represent the potential of the 
liquid flow in the form ~ = % + ~ ,  where % is the potential of the flow created by the 
bubble around the rigid wall; % ~is the potential of the flow induced by vibrations of 
the plate in the absence of the bubble. Linearizing boundary conditions (i.!), we write 
the following system of equations to determine ~, and ~: 

Acpz = O, 

Atp l=O,  O(pllOz-- 0 a t  z =  O, 

o%loB = UocosO~- a a t  B = a; 

O~lOt = OTe.,lOz at z = ~, pOcpe./Ot + pg~ + D A ~  + PwhO~lOt ~ = Pl, 

& = - p O % l O t  - o , 2 , / 2 .  

( 2 . 1 )  

( 2 . 2 )  

The solution of problem (2.1) is already known and has the form [3-5] 

,p~ = ==; d/r~ + ~/rb) + (~/2) (% + $e. (; + ~%)) • 

X (PI (COS Oa)]r 2 JF P1 (cos Ob)/r~) -~ (2/3) a4~ a (a + (2/3) gUo) • 

X (Re. (COS Oa)/rZa @ P~ (COS Ob)/r3b), 
PI (x) = x, Pe. (x) = (3x 2 - -  1)/2, 

dz o 

cos  oo = (~ - ~o ) /~a  cos  % = (~ + ~ o ) / b  

dpz/dt = OL/OZo, OPa/Ot = OL/Oa, 

T2P z -F T3Pa da T8P z -F TiP a 
dt -- 2npa ~ ( T , T ~ -  T~)' 

L --- r - -  (4/3) ~pa 3 (Ph --  Pp)' Ph = Poo + Pgzo, 

r = 2~0= ~ ( r . ~  + r ,~  ~ - 2%~o~ ). 
(2.3) 

Here, Pz and Pa are generalized momenta; ~ = a/2z0; z 0 is the z-coordinate of the center 
of the bubble; T and L are the kinetic energy and Lagrangian function of the bubble; T I, 
Ta, and T 3 are coefficients of the apparent additional masses of the bubble. These co- 
efficients are dependent on g and were evaluated in [3, 4]. The initial data for system 
(2.3) was assigned in the form 

a(0) = ao, ~o(0) = H ,  ~i0) = ~ = 0.  ( 2 . 4 )  

S y s t e m  o f  d y n a m i c a l  e q u a t i o n s  ( 2 . 2 )  was  i n t e g r a t e d  n u m e r i c a l l y  by  a R u n g e - K u t t a  m e t h o d  o f  
f o u r t h - o r d e r  a c c u r a c y .  

The  s o l u t i o n  o f  l i n e a r  ( r e l a t i v e  t o  (P2, r  s y s t e m  ( 2 . 2 )  c a n  be  r e p r e s e n t e d  t h r o u g h  
Fourier transforms 

oo co 

0 ~ 0  

co o o  

(P2 = S ekZkdk E einctJn (kr) q)2 (k, n, t) (2  ' 5 ) 
0 n = o  

(q and 92 are the corresponding Fourier transforms; Jn is a Bessei function of order n). 
In the case of axial symmetry (n = 0), we have the following simple equations for q and 

92 
d~/dt = k~  2, dS~/dt e. + O~h~ = Plk/(P + Pwkh), 

~ (pgk + Ok4)/(p + Pwkh), ~ = ~ Pl (r, t) Jo (kr) rdr ( 2 . 6 )  
o 
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Fig. 2 

with the initial conditions q(0) = dq(0)/dt = 0. In calculating the transform of excess 
pressure Pl, we isolated the singular part ~i/r and transformed it independently by means 
of the formula 

i Jo~_.=_=___~_=(kr) rdr _ _  e--hZo 
o Vz~ + r 2 k 

The remaining part was transformed on a grid with N nodes by means of Gregory's formulas 
(with fifth-order accuracy). After discretization of the transform parameter on the grid 
at N nodes, system (2.2), (2.6) was transformed to 2N equations written in normal Cauchy 
form. These equations were subsequently integrated by the Runge-Kutta method. We found 
the functions r t) by performing numerical integration on a grid with M nodes by means 
of Gregory's formulas (fifth-order accuracy). Numerical experiments established that the 
greatest accuracy is achieved when M = N. Due to the rapid convergence of the method, good 
accuracy can be attained in the given case even when N = I0. 

Figure 2 shows results of typical calculations. Curves 1 and 2 show two characteris- 
tic relations G(t), curve 3 shows pressure at the center of the plate p(t), and curve 4 
shows the radius of the first damage zone. Curve 1 describes G(t) for a high-pressure 
chamber of finite volume, while curve 2 describes the same for a chamber of infinite 
volume. The relation p(t) corresponds to curve 1 and is similar for curves 1 and 2 (this 
applies only to the initial, unsteady stage of bubble expansion; the relations p(t) are 
of course different during the quasisteady stage of expansion in the given case). It fol- 
lows from Fig. 2 that at t > t c pressure becomes negative, which corresponds to a disturb- 
ance of continuity and vanishing of the pressure acting on the plate. Thus, it has been 
established that the pressure on the plate during the nonsteady stage can be considered 
triangular, with the same parameters as exist for a point source: 

t/t~, 0 <<. t <~ t~, 
t 2 - - t  

pm~I r(t) , W ( t ) =  to ~ ,  t l < t < t  2, 
p (r, t) - -  l /  ~ + ~ / I t2  O, ~ > q ,  

t 1 ~ i ,25"~ 0, t 2 ~ to' Pm ~ 0'5H-1~O 1/59~/~ (GoRTb) 3/~ ( i  - -  i , 95A) ,  

0 045 1 a8 0 315 t~ = 1,7s.~ o, it  ." (p /CoRTb) .  , ,4 = p.,~o4/~O -~ /5  (CoR~b) -2 /~ ,  p .  = poo + pgU 
(2.7) 

x0 is the time of establishment of the flow rate Go; T b is the temperature of the liquid; 
A is the back-pressure parameter. 

3. Solution at the Second Stage. Plate Fracture. We will examine a plate of thick- 
ness h and radius R with a free edge. We will assume that the bottom surface of the plate 
is subjected to a pressure created by the expansion of the bubble. This pressure is deter- 
mined from (2.7). The pressure deforms and cracks the plate and forms a circular hole of 
radius r*. Nonlinear Karman equations [6] are used to describe these processes in the 
plate: 
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=~177 2 t-~rr~-]-r Or)' Z2=da--l__v2 2 t r - ~ r  4v0,,2 ) 
(3.1) 

(E l and E 2 are the total stresses on the surface of the plate). System (3.1) is written in 
dimensionless form. The relationships between the dimensional and dimensionless quantities 
are given by the formulas 

2 2 
D=Dbu/(PCoRh)' ~=~bu~R, t=tbu/T, T-~R/c o, ai=~ 

E = Eb~ !Po, Po = ~I,  % ~ :  EJ:/,2 (, - : ) ,  ~o = ~ /  E 
3~ (1 ----~) 

The damage accumulation process is described by Eq. (i,4), in which we replace o i with Z i- 
Assuming that the edges of the plate are free, we write the boundary conditions as 

~ [  . v o~[ f o ~ .  i o~ t 8~)[ =0, o, lr=o=O. (3 2) 

It follows from the condition of symmetry that at the center of the plate 

~, b=~ = 0, 0~/sr b= 0 = 0, ~3~ia: it= 0 = 0 (3.3) 

The condition of the free boundary (3.2) exists after fracture of the plate at the point 
r*. System (3.1), with boundary conditions (3.2)-(3.3), was solved numerically by an 
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explicit "cross" scheme. Here, the order of the approximation O[~ 2, (Ah)2], where �9 and 
Ah are the steps for t and r. The calculations were performed with the dimensionless plate 
parameters: h = 2"10 -2 , D = 0.25, E = 6.7"103 , p = i, v = 0.325. The pressure on the plate 

surface was determined by Eq. (2.7) with t I = i0 -a, t 2 = 2"10 -2 , H = 5"10 -2 , Pm = i.I. Free- 
boundary condition (3.2) existed after fracture of the plate at point r*. 

Figure 3 shows the calculated dependence of the radius of fracture on time r*(t) [a 
similar relation r*(t) was seen for all values of Pm and t 2 at which the finite plate frac- 
tured]. Comparing this relation with r*(t) for the infinite plate (curve 4 in Fig. 2), 
we see one important difference: after the curve r*(t) reaches saturation, one more frac- 
ture occurs - and this fracture has a significantly larger radius r* (Fig. 3). This sug- 
gests that the last fracture is different in nature from the fractures preceding it. Let 
us look at the fracture mechanism in greater detail. After the action of the pressure 
pulse, the plate begins to move upward. Since the velocity of the plate w rapidly decreases 
with an increase in r, bending stresses develop in the plate. These stresses become maximal 
at r = H. The first fracture occurs in this region. If the velocity of the particles of 
the remaining portion of the plate (r* < r < R) is high enough, then a stress greater than 
the critical stress will again develop after a certain amount of time and the next fracture 
will occur (Fig. 4, where the plate is shown at several moments of time tl-tT, with t I =At = 
4.2"10 -2 , At = t i - ti_l). After several fractures, this process ends at a certain r*. 
However, along with the tensile energy in the plate, there is a substantial reserve of com- 
pressive energy. After the compression waves reach the free edge of the plate, they are 
reflected in the form of rarefaction waves (Fig. 5, which shows the relations El(r) at the 
moments tl-tT). It is evident that at t = t 4 a wave is reflected from the free edge. Inter- 
ference of the reflected tension waves leads to a significant increase in E I. This in turn 
leads to another fracture at a point where E l > o*. The explanation just given is supported 
by Fig. 4, which shows that the curvature of the plate surface changes sign upon reflection 
of the wave from the free edge. 

To study the dependence of r* on Pm, we performed a series of calculations. The re- 
sults are shown in Fig. 6. As noted above, the minimum value of r* is equal to H, while 
the rapid increase in r*(pm/O*) on the initial section is connected with interference ef- 
fects. The fact that the curve r*(Pm/O*) forms an asymptote can be attributed to the free 
edge of the plate, where unloading makes it difficult to develop the tensile stress neces- 
sary for fracture. Proceeding on the basis of the equality of the kinetic energy K to the 
bending energy ~ we estimate the minimum value of Pm at which fracture begins. Ignoring 
the stresses present during the action of the pressure pulse t < t=, we obtain w = (I/2)pt2/ 
ph. We then use this to find the relative velocity of two points separated by the distance 
Ar: Aw = --0.5pt2rAr/(H 2 + r2). Since fracture occurs at r ~ Ar = H, we obtain IAw I 

(i/~4)Pmt2/0h, while the kinetic energy - undergoing transformation into tensile elastic 

energy - has the form K ~ (ph/2)(Aw) 2 ~ (Pmt2)2/(43ph). In accordance with [6], we evalu- 

ate the bending energy from the formula ~ ~ (Eh3/24)(82~/~r2)2. 

We use the equality K = ~ to find the curvature (~2~/8r2)* = (3/8)Pmt2/(/~h=). As- 

suming that fracture occurs at o, = (I/3)E l = (E/6)h(82r *, we obtain the sought for- 

mula (pm/O,)min = 16h/t2c , c = /E/p. Inserting the dimensionless parameters that we used 
into this formula, we have (pm/O,)min = 0.2. This estimate is satisfactory and agrees well 
with the value (pm/O,)min ~ 0.28 obtained in the numerical calculations (see Fig. 6). 

In conclusion, we thank A. Bekker for his assistance in performing certain calcula- 
tions. 
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PENETRATION OF A RIGID CONE INTO A PLASTIC ORTHOTROPIC HALF SPACE 

A. G. Akopyan UDC 539.374 

A study is made of the rigid-plastic flow of a plastic orthotropic material as a rigid 
rough cone penetrates a half space at a constant speed. The material of the half space 
is assumed to be incompressible, ideally rigid-plastic, and subject to the Mises-Hill rela- 
tions [i] for a plastic orthotropic body. We assume that the principal axes of anisotropy 
coincide with the axes of a spherical coordinate system whose center is the vertex of the 
cone. An analogous problem for an isotropic material was studied in [2]; penetration of 
a rigid wedge into an anisotropic half space was considered in [3]; and the imbedding of 
a rigid stamp into an anisotropic plastic medium was investfgated in [4]. A study of the 
penetration of a thin solid body into a transversally isotropic medium was given in [5]. 
In [6] a study was made of the penetration of a rigid cylindrical body into a plastic aniso- 
tropic pipe. 

In the present paper we determine the pressure force during penetration of a rigid 
cone into a plastic orthotropic half space; we find the zone of distribution of plastic 
deformations and the form of the free surface of the displaced portion of half space 
material. A numerical example is presented showing the essential effect of anisotropy on 
the plastic zone distribution. 

i. Assume that a rigid cone penetrates into a half space. We assume that the plastic 
region that is formed around the rigid cone of angle @ = a is bounded by a conical surface 
with angle 8 = 6; the location of this surface is to be determined in the course of solving 
our problem (Fig. i). We assume that the region of plastic flow is bounded by a surface 
r = R(e), free from external loads, whose shape is also to be determined. In this region 
properties of the material are assumed to be plastic orthotropic, being a consequence of 
plastic deformation of the material (deformation anisotropy). On the contacting conical 
surface there arises a tangential stress whose value depends mainly on the roughness of 
this surface. 

Since there is no rotation of the rigid cone about its axis or the lateral area of 
the cone is ideally smooth in the peripheral direction, the annular component of the rate 
of displacement is equal to zero, whence 7r~ = ?09 = 0, T~ = Tog = 0. 

The differential equations of equilibrium in the spherical coordinate system then has 
the following form for our problem: 

O(~rar F rt aT~Oao F ~r (2(~r - -  % - -  (~m -~ "fro c t g  O) = O, 

a'~ rO I a% Dr +-- ' r - -~ + r i -- [(%-c~m) ctgO'l- 3TrO] : 0 .  
(1.1) 

Relations between the components of the deformation rate tensor, displacement rates, 
and stresses are: 

8~ = a--; = e [17o (% - %)  + Go ( % -  %)I' 
~ i av 

% = -7-  + ~ ao - ~ [Fo (% - -  % )  + - ~ o  (% - -  ~ 

Erevan. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, 
pp. 159-163, September-October, 1991. Original article submitted September 29, 1989; re- 
vision submitted April 25, 1990. 
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